

I n s i d e M a c O S X

Developing Cocoa Objective-C
Applications: A Tutorial
July 2002

Apple Computer, Inc.
© 1993-1995, 2000-2002 Apple
Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Cocoa, Mac
and Macintosh are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.
Objective-C is a trademark of NeXT
Software, Inc., registered in the U.S.
and other countries.

Simultaneously published in the
United States and Canada.
Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

Contents

Chapter 1 Introduction 7

What You’ll Learn in This Tutorial 7

Chapter 2 Designing the Currency Converter Application 11

Designing the Currency Converter Application 11
Object Notation 11
The Model-View-Controller (MVC) Paradigm 13

Model Objects 13
View Objects 14
Controller Object 14
Hybrid Models 14
MVC in Currency Converter’s Design 15

Chapter 3 Building the Currency Converter Application 17

Creating the Currency Converter Project 17
Open Project Builder 18
Choose the New Project Command 18
Select Project Type 18

Creating the Currency Converter Interface 22
Nib Files 23
Open the Main Nib File 23
Windows in Cocoa 24

NSWindow and the Window Server 24
Application, Window, View 25
Key and Main Windows 25

Resize the Window 25
Set the Window’s Title and Attributes 27
Place a Text Field, Resize and Initialize It 28
Duplicate an Object 28
3
  Apple Computer, Inc. July 2002

C O N T E N T S

Change the Attributes of a Text Field 29
Assign Labels to the Fields 29
Add a Button to the Interface and Initialize It 32
Add a Horizontal Decorative Line 33
Aqua Layout and Object Alignment 34
Finalize the Window Layout 35
Enable Tabbing Between Text Fields 36
Set the initialFirstResponder for the Window 37
Test the Interface 38

For Free with Cocoa 39
Application and Window Behavior 39
Controls and Text 40
Menu Commands 40
Document Management 41
File Management 41
Communicating With Other Applications 41
Custom Drawing and Animation 41
Localization 42
Editing Support 42
Printing 42
Help 42
Plug-in Architecture 43

Defining the Classes of Currency Converter 43
Classes and Objects 43
Specify a Subclass 44
Paths for Object Communication: Outlets, Targets, and Actions 45

Outlets 45
When You Make a Connection in Interface Builder 46
Target/Action in Interface Builder 47
Which Direction to Connect? 48

Define the Outlets of the Class 48
Define the Actions of the Class 50

Connecting ConverterController to the Interface 50
Generate an Instance of the Class 50
Connect the Custom Class to the Interface 51
Connect the Interface Controls to the Class’s Actions 53
Define the Converter Class 54

Implementing the Classes of Currency Converter 54
4
  Apple Computer, Inc. July 2002

C O N T E N T S

Generate the Source Files 54
Objective-C Quick Reference 55

Messages and Method Implementations 55
Declarations 56

Examine an Interface (header) File in Project Builder 57
Add a method declaration 58
Implement Currency Converter’s Classes. 59

Implement the awakeFromNib method 60
Turbo Coding With Project Builder 61

Project Find 61
Integrated Documentation Viewing 61
Indentation 62
Delimiter Checking 62
Emacs Bindings 62

Build, Debug, and Run Currency Converter 62
What Happens When You Build An Application 63
Build the Project 63
Look Up Documentation 64
Debug the Project 66
Using the Graphical Debugger 66
Run Currency Converter 68

Chapter 4 Cocoa Resources 69

Cocoa Developer Documentation 69
Developer Tools Help 70
Mailing Lists 71
Books 71
Other Resources 71
5
  Apple Computer, Inc. July 2002

C O N T E N T S
6
  Apple Computer, Inc. July 2002

C H A P T E R 1

1 Introduction
This tutorial introduces the Cocoa application framework of Mac OS X, and teaches
you how to use Apple’s development tools and the Objective-C language to build
robust, object-oriented applications. Cocoa provides the best way to build modern,
multimedia-rich, objected-oriented applications for consumers and enterprise
customers alike. This tutorial assumes familiarity with C programming, but does
not assume any previous experience with Cocoa, Project Builder, or Interface
Builder.

What You’ll Learn in This Tutorial

In this tutorial you will build a simple application that converts a dollar amount to
an amount in another currency, given the rate of that currency relative to the dollar.
Here’s what the finished application looks like:

Figure 1-1 The completed Currency Converter application
What You’ll Learn in This Tutorial 7
  Apple Computer, Inc. July 2002

C H A P T E R 1

Introduction

Currency Converter is a simple application, yet it exemplifies much of what
software development with Cocoa is all about. As you’ll discover, Currency
Converter is amazingly easy to create, and it’s equally amazing how many features
you get “for free”—as with all Cocoa applications.

You can click in one of the text fields to enter a value, or use the tab key to move
between them. The conversion is invoked by clicking the Convert button or by
pressing the Return key. Because of the features inherited from the Cocoa
application environment, you can select the converted amount, copy it (with the
Edit menu’s Copy command), and paste it in another application that takes text.

This tutorial will lead you through all of the basic steps for creating a Cocoa
application. You’ll learn how to:

� Create a Project Builder project.

� Create a graphical user interface using Interface Builder.

� Create a custom subclass of a Cocoa framework class.

� Connect an instance of your custom subclass to the interface.

By following the steps of this tutorial, you will become more familiar with the two
most important Cocoa applications used for application development: Interface
Builder and Project Builder. You will also learn the typical work flow of Cocoa
application development:

1. Designing the application (your brain)

2. Creating the project (Project Builder)

3. Creating the interface (Interface Builder)

4. Defining the classes (Interface Builder)

5. Implementing the classes (Project Builder)

6. Building the project (Project Builder)

7. Running and testing the application

Along the way, you’ll also learn how to design an application using a common
object-oriented design paradigm. For additional background on object-oriented
programming and Objective-C, see Inside Mac OS X: The Objective-C Programming
Language.

The tutorial consists of the next two chapters, which you should complete in order:
8 What You’ll Learn in This Tutorial
  Apple Computer, Inc. July 2002

C H A P T E R 1

Introduction

1. “Designing the Currency Converter Application” (page 11)

2. “Building the Currency Converter Application” (page 17)

The final chapter, “Cocoa Resources” (page 69), describes where you can go to
further improve your knowledge of Cocoa and Mac OS X programming in general.
What You’ll Learn in This Tutorial 9
  Apple Computer, Inc. July 2002

C H A P T E R 1

Introduction
10 What You’ll Learn in This Tutorial
  Apple Computer, Inc. July 2002

C H A P T E R 2

2 Designing the Currency
Converter Application
This part of the tutorial explains the most common object-oriented design paradigm
used in Cocoa, Model-View-Controller, and guides you through the design of the
Currency Converter application.

Designing the Currency Converter Application

An object-oriented application should be based on a design that identifies the
objects of the application and clearly defines their roles and responsibilities. You
normally work on a design before you write a line of code. You don’t need any fancy
tools for designing many applications; a pencil and a pad of paper will do.

Object Notation
When designing an object-oriented application, it is often helpful to graphically
depict the relationships between objects. This tutorial depicts objects graphically
like Figure 2-1.
Designing the Currency Converter Application 11
  Apple Computer, Inc. July 2002

C H A P T E R 2

Designing the Currency Converter Application

Figure 2-1 An object as a jelly donut

Though this representation might look a bit like a jelly donut, or a lifesaver, or a
slashed tire, it illustrates data encapsulation, the essential characteristic of objects.
An object consists of both data and procedures for manipulating that data. Other
objects or external code cannot access that data directly, but must send messages to
the object requesting its data.

An object’s procedures (called methods) respond to the message and may return
data to the requesting object. As the symbol suggests, an object’s methods do the
encapsulating, in effect mediating access to the object’s data. An object’s methods
are also its interface, articulating the ways in which the object communicates with
the world outside it.

The donut symbol also helps to convey the modularity of objects. Because an object
encapsulates a defined set of data and logic, you can easily assign it to particular
duties within a program. Conceptually, it is like a functional unit—for instance,
“Customer Record”—that you can move around on a design board; you can then
plot communication paths to and from other objects based on their interfaces.

See Inside Mac OS X: The Objective-C Language for a fuller description of data
encapsulation, messages, methods, and other things pertaining to object-oriented
programming.

method

m
ethodmet

ho
d data
12 Designing the Currency Converter Application
  Apple Computer, Inc. July 2002

C H A P T E R 2

Designing the Currency Converter Application

The Model-View-Controller (MVC) Paradigm
Currency Converter is an extremely simple application, but there’s still a design
behind it. This design is based upon the Model-View-Controller paradigm, the
model behind many designs for object-oriented programs. This design pattern aids
in the development of maintainable, extensible, and understandable systems.

Model-View-Controller (MVC) was derived from Smalltalk-80. It proposes three
types of objects in an application, separated by abstract boundaries and
communicating with each other across those boundaries.

Figure 2-2 Object relationships in the Model-View-Controller paradigm

Model Objects

This type of object represents special knowledge and expertise. Model objects hold
data and define the logic that manipulates that data. For example, a Customer
object, common in business applications, is a Model object. It holds data describing
the salient facts about a customer and has access to algorithms that access and
calculate new data from those facts. A more specialized Model class might be one
in a meteorological system called Front; objects of this class would contain the data

View

Controller

Model
Designing the Currency Converter Application 13
  Apple Computer, Inc. July 2002

C H A P T E R 2

Designing the Currency Converter Application

and intelligence to represent weather fronts. Model objects are not directly
displayed. They often are reusable, distributed, persistent, and portable to a variety
of platforms.

View Objects

A View object in the paradigm represents something visible on the user interface (a
window, for example, or a button). A View object is “ignorant” of the data it
displays. The Application Kit usually provides all the View objects you need:
windows, text fields, scroll views, buttons, browsers, and so on. But you might want
to create your own View objects to show or represent your data in a novel way (for
example, a graph view). You can also group View objects within a window in novel
ways specific to an application. View objects, especially those in kits, tend to be very
reusable and so provide consistency between applications.

Controller Object

Acting as a mediator between Model objects and View objects in an application is a
Controller object. There is usually one per application or window. A Controller
object communicates data back and forth between the Model objects and the View
objects. It also performs all the application-specific chores, such as loading nib files
and acting as window and application delegate. Since what a Controller does is very
specific to an application, it is generally not reusable even though it often comprises
much of an application’s code. (This last statement does not mean, however, that
Controller objects cannot be reused; with a good design, they can.)

Because of the Controller’s central, mediating role, Model objects need not know
about the state and events of the user interface, and View objects need not know
about the programmatic interfaces of the Model objects. You can make your View
and Model objects available to others from a palette in Interface Builder.

Hybrid Models

MVC, strictly observed, is not advisable in all circumstances. Sometimes it’s best
to combine roles. For instance, in a graphics-intensive application, such as an arcade
game, you might have several View objects that merge the roles of View and Model.
In some applications, especially simple ones, you can combine the roles of
Controller and Model; these objects join the special data structures and logic of
Model objects with the Controller’s hooks to the interface.
14 Designing the Currency Converter Application
  Apple Computer, Inc. July 2002

C H A P T E R 2

Designing the Currency Converter Application

MVC in Currency Converter’s Design

Currency Converter consists of two custom objects (Model and Controller) and a
user interface (View), implemented using a collection of ready-made Application
Kit objects. A Converter object is responsible for computing a currency amount and
returning that value. Between the user interface and the Converter object is a
controller object, ConverterController. ConverterController coordinates the activity
between the Converter object and the UI objects.

Figure 2-3 Model-View-Controller relationships in Currency Converter

ConverterController
(Controller object)

Convert

Converter
(Model Object)
Designing the Currency Converter Application 15
  Apple Computer, Inc. July 2002

C H A P T E R 2

Designing the Currency Converter Application

The ConverterController class assumes a central role. Like all controller objects, it
communicates with the interface and with model objects, and it handles tasks
specific to the application. ConverterController gets the values that users enter into
fields, passes these values to the Converter object, gets the result back from
Converter, and puts this result in a field in the interface.

The Converter class merely computes a value from two arguments passed into it
and returns the result. As with any model object, it could also hold data as well as
provide computational services. Thus, objects that represent customer records (for
example) are akin to Converter. By insulating the Converter class from
application-specific details, the design for Currency Converter makes it more
reusable.

This design for Currency Converter is intended to illustrate a few points, and so
may be overly designed for something so simple. It is quite possible to have the
application’s controller class, ConverterController, perform the computation and
do without the Converter class.
16 Designing the Currency Converter Application
  Apple Computer, Inc. July 2002

C H A P T E R 3

3 Building the Currency Converter
Application
This part of the tutorial guides you through building the Currency Converter
application and in the process teaches you the steps essential to building a Cocoa
application using Objective-C.

The tasks in this chapter include:

1. “Creating the Currency Converter Project” (page 17)

2. “Creating the Currency Converter Interface” (page 22)

3. “Defining the Classes of Currency Converter” (page 43)

4. “Connecting ConverterController to the Interface” (page 50)

5. “Implementing the Classes of Currency Converter” (page 54)

6. “Build, Debug, and Run Currency Converter” (page 62)

Creating the Currency Converter Project

Every Cocoa application starts out as a project. A project is a repository for all the
elements that go into the application, such as source code files, frameworks,
libraries, the application’s user interface, sounds, and images. You use the Project
Builder application to create and manage your project.

There are three basic steps to create a Cocoa project:

“Open Project Builder” (page 18)
Creating the Currency Converter Project 17
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application

“Choose the New Project Command” (page 18)

“Select Project Type” (page 18)

Open Project Builder
To open Project Builder:

1. Find Project Builder in /Developer/Applications/.

2. Double-click the icon, shown in Figure 3-1.

Figure 3-1 The Project Builder application icon

The first time you start Project Builder, you’ll be asked a few setup questions. The
default values should work for the majority of users.

Choose the New Project Command
When Project Builder is launched, only its menus appear. To create a project, choose
New Project from the File menu. Project Builder will then display the New Project
window.

Select Project Type
Project Builder can build many different types of applications, including everything
from Carbon and Cocoa applications to Mac OS X kernel extensions and Mac OS X
frameworks. For this tutorial, select Cocoa Application and click Next, as shown in
Figure 3-2 (page 19).
18 Creating the Currency Converter Project
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application

Figure 3-2 Project Builder’s New Project Assistant

1. Using the file-system browser, navigate to the directory where you want your

project to be.

2. Type the name of the project in the Name field. For the current project, type the

name “Currency Converter.”

3. Click Finish.
Creating the Currency Converter Project 19
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application

Figure 3-3 Selecting a name and location in Project Builder’s New Project Assistant

When you click Finish, Project Builder creates and displays a project window, as
shown in Figure 3-4.
20 Creating the Currency Converter Project
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-4 The new Currency Converter project in Project Builder.

Notice that Project Builder uses hierarchical groups to organize a project. These
groups are very flexible in that they do not necessarily reflect either the on-disk
layout of the project or the build system handling of the files. They are purely for
organizing your project. The default groups created for you by the templates can be
used as is or rearranged however you like.

Go ahead and click an item in the left column of the project browser and see what
some of the default groups contain:

Classes This group is empty at first, but it will be used to hold the
implementation and header files for your project.

Other Sources This group contains main.m, the main() routine that loads the
initial set of resources and runs the application. (You shouldn’t have to
modify this file.)

Resources This group contains the nib files (extension .nib) and other resources
which specify the application’s user interface. More on nib files in the next
step.

Frameworks This group contains the frameworks (which are similar to libraries)
which the application imports.

Products This group contains the results of project builds and is automatically
populated with references to the products created by each target in the
project.
Creating the Currency Converter Project 21
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Curious folks might want to look in the project directory to see what kind of files it
now contains. Among the project files are:

English.lproj

A directory containing resources localized to your preferred language.
In this directory are nib files automatically created for the project. You
may find other localized resources, such as Dutch.lproj. For more
information on nib files, see the developer documentation for Interface
Builder.

main.m

A file, generated for each project, that contains the entry-point code for
the application.

Currency Converter.pbproj

This file contains information that defines the project. It too should not
be modified. You can open your project by double-clicking this file in the
Finder.

Creating the Currency Converter Interface

This section of the tutorial guides you through the twelve code-free steps involved
in creating a functioning graphical interface for Currency Converter, and explains
interesting and important aspects of Cocoa programming along the way.

The steps are as follows:

“Open the Main Nib File” (page 23)

“Resize the Window” (page 25)

“Set the Window’s Title and Attributes” (page 27)

“Place a Text Field, Resize and Initialize It” (page 28)

“Duplicate an Object” (page 28)

“Change the Attributes of a Text Field” (page 29)

“Assign Labels to the Fields” (page 29)
22 Creating the Currency Converter Interface
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
“Add a Button to the Interface and Initialize It” (page 32)

“Add a Horizontal Decorative Line” (page 33)

“Finalize the Window Layout” (page 35)

“Enable Tabbing Between Text Fields” (page 36)

“Test the Interface” (page 38)

Nib Files
Every application with a graphical user interface has at least one nib file. The main
nib file is loaded automatically when an application launches and contains the
application menu and generally as least one window along with various other
objects. An application can have other nib files as well. Each nib file contains:

Archived Objects Also known in object-oriented terminology as “flattened” or
“serialized” objects—meaning that the object has been encoded in such a way that
it can be saved to disk (or transmitted over a network connection) and later restored
in memory. Archived objects contain information such as their size, location, and
position in the object hierarchy. At the top of the hierarchy of archived objects is the
File’s Owner object, a proxy object that points to the actual object that owns the nib
file (typically the one that loaded the nib file from disk).

Images Image files that you drag and drop over the nib file window or over an
object that can accept them (such as a button or image view).

Class References Interface Builder can store the details of Cocoa objects and
objects that you palettize (static palettes), but it does not know how to archive
instances of your custom classes since it doesn’t have access to the code. For these
classes, Interface Builder stores a proxy object to which it attaches class information.

Connection Information Information about how objects within the object
hierarchy are interconnected. Connector objects special to Interface Builder store
this information. When you save the document, connector objects are archived in
the nib file along with the objects they connect.

Open the Main Nib File

1. Locate MainMenu.nib in the Resources group in Project Builder.
Creating the Currency Converter Interface 23
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
2. Double-click to open it. This will open Interface Builder and bring up the nib file.

A default menu bar and window titled “Window” will appear when the nib file is
open.

Windows in Cocoa
A window in Cocoa looks very similar to windows in other user environments such
as Windows or Mac OS 9. It is a rectangular area on the screen in which an
application displays things such as controls, fields, text, and graphics. Windows can
be moved around the screen and stacked on top of each other like pieces of paper.
A typical Cocoa window has a title bar, a content area, and several control objects.

NSWindow and the Window Server

Many user-interface objects other than the standard window are windows. Menus,
pop-up lists, and pull-down lists are primarily windows, as are all varieties of utility
windows and dialogs: attention dialogs, Info windows, and tool palettes, to name a
few. In fact, anything drawn on the screen must appear in a window. End-users,
however, may not recognize or refer to them as “windows”.

Two interacting systems create and manage Cocoa windows. On the one hand, a
window is created by the Window Server. The Window Server is a process which
uses the internal window management portion of Quartz (the low-level drawing
system) to draw, resize, hide, and move windows using Quartz graphics primitives.
The Window Server also detects user events (such as mouse clicks) and forwards
them to applications.

The window that the Window Server creates is paired with an object supplied by
the Application Kit: an instance of the NSWindow class. Each physical window in
a Cocoa program is managed by an instance of NSWindow (or subclass).

When you create an NSWindow object, the Window Server creates the physical
window that the NSWindow object will manage. The Window Server references the
window by its window number, the NSWindow by its own identifier.
24 Creating the Currency Converter Interface
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Application, Window, View

In a running Cocoa application, NSWindow objects occupy a middle position
between an instance of NSApplication and the views of the application. (A view is
an object that can draw itself and detect user events.) The NSApplication object
keeps a list of its windows and tracks the current status of each. Each NSWindow
object, on the other hand, manages a hierarchy of views in addition to its window.

At the “top” of this hierarchy is the content view, which fits just within the
window’s content rectangle. The content view encloses all other views (its
subviews), which come below it in the hierarchy. The NSWindow distributes events
to views in the hierarchy and regulates coordinate transformations among them.

Another rectangle, the frame rectangle, defines the outer boundary of the window
and includes the title bar and the window’s controls. Cocoa uses the lower-left
corner of the frame rectangle as the origin for the base coordinate system, unlike
Carbon and Classic applications, which use the upper-left corner. Views draw
themselves in coordinate systems transformed from (and relative to) this base
coordinate system.

Key and Main Windows

Windows have numerous characteristics. They can be on-screen or off-screen.
On-screen windows are “layered” on the screen in tiers managed by the Window
Server. On-screen windows also can carry a status: key or main.

Key windows respond to key presses for an application and are the primary
recipient of messages from menus and panels. Usually a window is made key when
the user clicks it. Each application can have only one key window.

An application has one main window, which can often have key status as well. The
main window is the principal focus of user actions for an application. Often user
actions in a modal key window (typically a panel such as the Font window or an
Info window) have a direct effect on the main window.

Resize the Window
1. Make the window smaller by dragging an edge of the bottom-right corner of the

window inward.
Creating the Currency Converter Interface 25
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-5 A resized window in Interface Builder

You can resize the window more precisely by using the Size menu of the Window
Info Window.

1. Choose Show Info from the Tools menu.

2. Select Size from the pop-up menu.

3. In the “Content Rect” area, select “Width/Height” from the right-hand pop-up
menu. In the text fields under the Width/Height menu, type 400 in the width (w)
field and 200 in the height (h) field, as shown in Figure 3-6 (page 27).
26 Creating the Currency Converter Interface
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-6 Resizing a window with Interface Builder’s Info palette

Set the Window’s Title and Attributes
While the Info Window is open, set other attributes for the window.

1. Select Attributes from the Info window’s pop-up menu and change the
window’s title to “Currency Converter”.

2. Verify that the “Visible at launch time” option is selected.

3. De-select the “Resize” check box in the “Controls” area.
Creating the Currency Converter Interface 27
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Place a Text Field, Resize and Initialize It

1. Drag a text field object onto the Currency Converter window. Notice that
Interface Builder helps you place objects according to the Aqua Interface
Guidelines by displaying “pop-up” guides when an object is dragged close to
the proper distance from neighboring objects or the edge of the window.

2. Resize the text field by grabbing a handle and dragging in the direction you
want it to grow. In this case, drag the left handle to the left to enlarge the text
field.

Figure 3-7 Adding a text field in Interface Builder

Currency Converter needs two more text fields, both the same size as the first. You
have two options: you can drag another object from the palette and make it the same
size; or you can duplicate the first object.

Duplicate an Object

1. Select the text field, if it is not already selected.

2. Choose Duplicate (Command-D) from the Edit menu. The new text field
appears slightly offset from the original field.

3. Reposition the new text field under the first text field. Notice that guides appear
and assist you by “snapping” the second text field into place.
28 Creating the Currency Converter Interface
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
4. To make the third text field, type Command-D again. Notice that IB
remembered the offset from the previous Duplicate command and
automatically applied it to the newly created text field.

Change the Attributes of a Text Field
The bottom text field will display the results of the computation and should
therefore have different attributes than the other text fields. It should not be editable
or selectable.

1. Select the third text field.

2. Bring up the Info Window and choose Attributes from the pop-up menu.

3. Turn off the Editable attribute in the Options section of the Info window so that
users will not be able to alter the contents of the field. Keep the Selectable
attribute so that users can copy and paste the contents to other applications.

Assign Labels to the Fields
Text fields without labels would be confusing, so add labels by using the
ready-made label object from the Views palette.

1. Drag a System Font Text object onto the window from the Views palette.
Creating the Currency Converter Interface 29
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-8 Adding a text label in Interface Builder

2. Make the text right aligned; with the System Font Text object selected, click on
the third button from the left in the Alignment area of the Info window.
30 Creating the Currency Converter Interface
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-9 Right-aligning a text label in Interface Builder

3. Duplicate the text label twice, enter the text for each, and align them as shown
in Figure 3-10.
Creating the Currency Converter Interface 31
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-10 Aligned text fields and labels in Interface Builder

Add a Button to the Interface and Initialize It
The currency conversion can be invoked either by clicking a button or pressing
Return.

1. Drag the button object from the Views palette and put it in the lower-right
portion of the window.

2. Double click the title of the button to select its text label and change the title to
“Convert”.

3. Choose Attributes in the NSButton Info Window, and then choose Return from
the pop-up menu labeled “Equiv:”. This will give the button the capacity to
respond to the Return key as well as to mouse clicks.

4. Align the button under the text fields.

First, drag the button downward until the Aqua guide appears. With the button
still selected, hold down the Option key. If you move the cursor around Interface
Builder will show you the distance from the button to the object that you’ve
indicated with the cursor. With the Option key still down and the cursor over
the bottom text field, use the arrow keys to nudge the button to the exact center
of the text fields.
32 Creating the Currency Converter Interface
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-11 Measuring distances in Interface Builder

Add a Horizontal Decorative Line
You’ve probably noticed that the final interface for Currency Converter has a
decorative line between the text fields and the button.

1. Drag a horizontal separator object from the Views palette onto the interface. It’s
located just beneath the radio button matrix object in the lower left hand corner
of the Views palette.

2. Drag the endpoints of the line until the line extends across the window.
Creating the Currency Converter Interface 33
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-12 Adding elements to the Currency Converter window in Interface Builder

3. Move the Convert button back up until the Aqua guide appears.

Aqua Layout and Object Alignment
In order to make an attractive user interface, you must be able to visually align
interface objects in rows and columns. “Eyeballing” the alignments can be very
difficult, and typing in x/y coordinates by hand is tedious and time consuming.
Aligning Aqua interface widgets is made even more difficult because the objects
have shadows and UI guideline metrics don't typically take the shadows into
account. Interface Builder uses visual guides and layout rectangles to help you with
object alignment.

In Cocoa, all drawing is done within the bounds of an object’s frame. Because
interface objects have shadows, they don't visually align correctly if you align the
edges of the frames (as is done with Mac OS 9). For example, the Aqua UI guidelines
say that a push button should be 20 pixels tall, but you actually need a frame of 32
pixels for both the button and its shadow. The layout rectangle is what you must
align.

You can view the layout rectangles of objects in IB using “Show Layout Rectangles”
in the Layout menu (Command-L). Also, the IB size pane has a pop-up to toggle
between the frame and layout rectangle so you can set values by hand when
appropriate.

Interface Builder gives you many ways to align objects in a window:
34 Creating the Currency Converter Interface
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
� Dragging objects with the mouse in conjunction with Aqua guides

� Pressing arrow keys (with the grid off, the selected objects move one pixel)

� Using a reference object to put selected objects in rows and columns

� Using the built-in alignment functions

� Specifying origin points in the Size display of the Info window

� Using horizontal and/or vertical guides

Look in the Alignment and Guides sub-menus of the Layout menu for various
alignment commands and tools. You can also use the alignment tool (choose
Alignment in the Tools menu) which provides a floating window with buttons that
perform various types of alignment.

Finalize the Window Layout
Currency Converter’s interface is almost complete. The finishing touch is to resize
the window so that all of the object are centered and properly aligned to each edge;
currently the objects are only aligned to the top and right edge.

For Currency Converter, you will continue using the automated Aqua guides along
with a few Layout commands.

1. Select the third text label “Amount in Other Currency”, then extend the selection
(Shift-click) to include the other two.

2. Resize all the labels to their minimum width by choosing “Size to Fit” in the
layout menu.

3. Select “Same Size” from the Layout menu to make the selected text labels the
same size.

4. Drag the labels towards the left edge of the window, and release them when the
Aqua guide appears.

5. Select all three text fields and drag them to the left, again using the guides to help
you find the proper position.

6. Shorten the horizontal separator and move the button into position again under
the text fields.

7. Resize the window using the guides to give you the proper distance from the
text fields on the right and the Convert button on the bottom.
Creating the Currency Converter Interface 35
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
At this point the application’s window should look like Figure 3-13.

Figure 3-13 Currency Converter’s final user interface in Interface Builder

Enable Tabbing Between Text Fields
The final step in composing the Currency Converter interface has more to do with
behavior than with appearance. You want the user to be able to tab from the first
editable field to the second, and back to the first. Many objects in Interface Builder’s
palettes have an instance variable named nextKeyView. This variable identifies the
next object to receive keyboard events when the user presses the Tab key (or the
previous object if Shift-Tab is pressed). If you want inter-field tabbing, you must
connect fields through the nextKeyView variable.

1. Select the first text field.

2. Control-drag a connection line from it to the second text field.
36 Creating the Currency Converter Interface
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-14 Connecting nextKeyView outlets in Interface Builder

3. In the Info window, select nextKeyView and click Connect. The nextKeyView outlet
identifies the next object to respond to events after the Tab key is pressed.

4. Repeat the same procedure, going from the second field to the first.

Set the initialFirstResponder for the Window
In the previous section, you set up the key view loop using Interface Builder,
establishing connections between the nextKeyView outlets of the two text fields.
Now you must set the window’s initialFirstResponder outlet to the text field that
you want selected when the window is first placed on screen. If you do not set this
outlet, the window sets a key loop (not necessarily the same as the one you would
have specified!) and picks a default initial first responder for you.

1. Control-drag a connection line from the Window instance to the first text field.
Creating the Currency Converter Interface 37
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-15 Setting the initialFirstResponder outlet in Interface Builder

2. In the Info window, select initialFirstResponder and click Connect.

Test the Interface
The Currency Converter interface is now complete. Interface Builder lets you test an
interface without having to write one line of code.

1. Choose File > Save All to save your work

2. Choose File > Test Interface.

3. Try various operations in the interface, such as tabbing, and cutting and pasting
between text fields.

4. When finished, choose Quit NewApplication from the Interface Builder
application menu to exit test mode.
38 Creating the Currency Converter Interface
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Notice that the screen position of the Currency Converter window in Interface
Builder is used as the initial position for the window when the application is
launched. Place the window near the top left corner of the screen so it will be in a
convenient (and traditional) initial location.

For Free with Cocoa

The simplest Cocoa application, even one without a line of code added to it,
includes a wealth of features that you get “for free.” You do not have to program
these features yourself. You can see this when you test an interface in Interface
Builder.

Application and Window Behavior
In test mode Currency Converter behaves almost like any other application on the
screen. Click elsewhere on the screen, and Currency Converter is deactivated,
becoming totally or partially obscured by the windows of other applications.

Reactivate Currency Converter by clicking on its window. Then move the window
around by its title bar. Here are some other tests you can make:

1. Click the Edit menu. Its items appear and disappear when you release the mouse
button, as with any application menu.

2. Click the miniaturize button. Click the window’s icon in the Dock get the
application back.

3. Click the close button, and the Currency Converter window disappears.
(Choose Quit from the main menu and re-enter test mode to get the window
back.)

If we hadn’t configured Currency Converter’s window in Interface Builder to
remove the resize box, we could resize it now. We could also have set the
auto-resizing attributes of the window and its views so that the window’s objects
would resize proportionally to the resized window or would retain their initial size
(see Interface Builder Help for details on auto-resizing).
For Free with Cocoa 39
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Controls and Text
The buttons and text fields of Currency Converter come with many built-in
behaviors. Notice that the Convert button “throbs” as is the default for Aqua
buttons associated with the Return key. Click the Convert button. Notice how the
button is highlighted momentarily.

If you had buttons of a different style they would also respond in characteristic
ways to mouse clicks.

Now click in one of the text fields. See how the cursor blinks in place. Type some
text and select it. Use the commands in the Edit menu to copy it and paste it in the
other text field.

Do you recall the nextKeyView connections you made between Currency Converter’s
text fields? Insert the cursor in a text field, press the Tab key and watch the cursor
jump from field to field.

Menu Commands
Interface Builder gives every new application a default main menu that includes the
Application, File, Edit, Window, and Help menus. Some of these menus, such as
Edit, contain ready-made sets of commands. For example, with the Services
sub-menu (whose items are added by other applications at run time) you can
communicate with other Cocoa applications, and with the Window menu you can
manage your application’s windows.

Currency Converter needs only a few commands: the Quit and Hide commands
and the Edit menu’s Copy, Cut, and Paste commands. You can delete the unwanted
commands if you wish. However, you could also add new ones and get “free”
behavior. An application designed in Interface Builder can acquire extra
functionality with the simple addition of a menu or menu command, without the
need for compilation. For example:

� The Font submenu adds behavior for applying fonts to text in text view objects,
like the one in the scroll view object in the Data Views palette. Your application
gets the Font window and a font manager “for free.”

� The Text submenu allows you to align text anywhere text is editable, and to
display a ruler in the NSText object for tabbing, indentation, and alignment.

� Many objects that display text or images can print their contents as PDF data.
40 For Free with Cocoa
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Document Management
Many applications create and manage repeatable, semi-autonomous objects called
documents. Documents contain discrete sets of information and support the entry
and maintenance of that information. A word-processing document is a typical
example. The application coordinates with the user and communicates with its
documents to create, open, save, close, and otherwise manage them.

File Management
An application can use the Open dialog, which is created and managed by the
Application Kit, to help the user locate files in the file system and open them. It can
also use the Save dialog to save information in files. Cocoa also provides classes for
managing files in the file system (creating, comparing, copying, moving, and so
forth) and for managing user defaults.

Communicating With Other Applications
Cocoa gives an application several ways to exchange information with other
applications:

� Pasteboard The pasteboard is a global facility for sharing information among
applications. Applications can use the pasteboard to hold data that the user has
cut or copied and may paste into another application.

� Services Any application can access the services provided by another
application, based on the type of selected data (such as text). An application can
also provide services to other applications such as encryption, language
translation, or record-fetching.

� Drag-and-drop If your application implements the proper protocol, users can
drag objects to and from the interfaces of other applications.

Custom Drawing and Animation
Cocoa lets you create your own custom views that draw their own content and
respond to user actions. To assist you in this, Cocoa provides objects and functions
for drawing such as the NSBezierPath class.
For Free with Cocoa 41
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Localization
Cocoa provides API and tool support for localizing the strings, images, sounds, and
nib files that are part of an application.

Editing Support
You can get several panels (and associated functionality) when you add certain
menus to your application’s menu bar in Interface Builder. These “add-ons” include
the Font window (and font management), the color picker (and color management),
and, the text ruler and the tabbing and indentation capabilities the Text menu brings
with it.

Formatter classes enable your application to format numbers, dates, and other types
of field values. Support for validating the contents of fields is also available.

Printing
With just a simple Interface Builder procedure, Cocoa automates simple printing of
views that contain text or graphics. When a user clicks the control, an appropriate
dialog helps to configure the print process. The output is WYSIWYG.

Several Application Kit classes give you greater control over the printing of
documents and forms, including features such as pagination and page orientation.

Help
You can very easily create context-sensitive help—knows as “tool tips”—for your
application using the Info window in Interface Builder. After you’ve entered the
tool tip text, the user can then hold the cursor over an object on the application’s
interface and a small window will appear containing concise information on the
object.
42 For Free with Cocoa
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Plug-in Architecture
You can design your application so that users can incorporate new modules later
on. For example, a drawing program could have a tools palette: pencil, brush,
eraser, and so on. You could create a new tool and have users install it. When the
application is next started, this tool appears in the palette.

Defining the Classes of Currency Converter

Interface Builder is a versatile tool for application developers. It enables you not
only to compose the application’s graphical user interface, but it gives you a way to
define much of the programmatic interface of the application’s classes and to
connect the objects eventually created from those classes.

There are three steps to define the classes of Currency Converter:

“Specify a Subclass” (page 44)

“Define the Outlets of the Class” (page 48)

“Define the Actions of the Class” (page 50)

Classes and Objects
To newcomers, explanations of object-oriented programming might seem to use the
terms “object” and “class” interchangeably. Are an object and a class the same
thing? And if not, how are they different? How are they related?

An object and a class are both programmatic units. They are closely related, but
serve quite different purposes in a program.

First, classes provide a taxonomy of objects, a useful way of categorizing them. Just
as you can say a particular tree is a pine tree, you can identify a particular software
object by its class. You can thereby know its purpose and what messages you can
send it. In other words, a class describes the type of an object.
Defining the Classes of Currency Converter 43
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Second, you use classes to generate instances —or objects. Classes define the data
structures and behavior of their instances, and at run time create and initialize these
instances. In a sense, a class is like a factory, stamping out instances of itself when
requested.

What especially differentiates a class from its instance is data. An instance has its
own unique set of data but its class, strictly speaking, does not. The class defines the
structure of the data its instances will have, but only instances can hold data.

A class, on the other hand, implements the behavior of all of its instances in a
running program. The donut symbol used to represent objects is a bit misleading
here, because it suggests that each object contains its own copy of code. This is
fortunately not the case; instead of being duplicated, this code is shared among all
current instances in the program.

Implicit in the notion of a taxonomy is inheritance, a key property of classes. Classes
exist in a hierarchical relationship to one another, with a subclass inheriting
behavior and data structures from its superclass, which in turn inherits from its
superclass.

See the appendix, “Object-Oriented Programming,” for more on these and other
aspects of classes.

Specify a Subclass
You must go to the Classes display of the nib file window to define a class. Let’s start
with the ConverterController class.

1. In Interface Builder, select the Classes display of the MainMenu.nib window.

2. In the leftmost column of the pane, click on NSObject and hit Return to create an
NSObject subclass called “MyObject.” Type “ConverterController” to rename it.
44 Defining the Classes of Currency Converter
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-16 Subclassing NSObject

Paths for Object Communication: Outlets, Targets,
and Actions
In Interface Builder, you specify the paths for messages travelling between the
ConverterController object and other objects as outlets and actions.

Outlets

An outlet is an instance variable that identifies an object.

Figure 3-17 An outlet pointing from one jelly donut to another

A B

outlet
Defining the Classes of Currency Converter 45
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
You can communicate with other objects in an application by sending messages to
outlets.

An outlet can reference any object in an application: user-interface objects such as
text fields and buttons, windows and dialogs, instances of custom classes, and even
the application object itself. What distinguishes outlets is their relationship to
Interface Builder.

Outlets are declared as:

IBOutlet id variableName;

You can use id as the type for any object; objects with id as their type are
dynamically typed, meaning that the class of the object is determined at run time.

When you don’t need a dynamically typed object, you can—and should—statically
type it as a pointer to an object:

IBOutlet NSButton *myButton;

Interface Builder can “recognize” outlets in code by their declarations, and it can
initialize outlets. You usually set an outlet’s value in Interface Builder by drawing
connection lines between objects. There are ways other than outlets to reference
objects in an application, but outlets and Interface Builder’s facility for initializing
them are a great convenience.

When You Make a Connection in Interface Builder

As with any instance variable, outlets must be initialized at run time to some
reasonable value—in this case, an object’s identifier (id value). Because of Interface
Builder, an application can initialize outlets when it loads a nib file.

When you make a connection in Interface Builder, a special connector object holds
information on the source and destination objects of the connection. (The source
object is the object with the outlet.) This connector object is then stored in the nib
file. When a nib file is loaded, the application uses the connector object to set the
source object’s outlet to the id value of the destination object.
46 Defining the Classes of Currency Converter
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
It might help to understand connections by imagining an electrical outlet embedded
in the destination object. Also picture an electrical cord extending from the outlet in
the source object. Before the connection is made the cord is unplugged and the value
of the outlet is undefined; after the connection is made (the cord is plugged in), the
id value of the destination object is assigned to the source object’s outlet.

Target/Action in Interface Builder

As you’ll soon find out, you can view (and complete) target/action connections in
Interface Builder’s Connections Info window. This interface is easy to use, but the
relation of target and action in it might not be apparent. First, a target is an outlet of
a cell object that identifies the recipient of an action message. Well (you say) what’s
a cell object and what does it have to do with a button?

One or more cell objects are always associated with a control object (that is, an object
inheriting from NSControl, such as a button). Control objects “drive” the invocation
of action methods, but they get the target and action from a cell. NSActionCell
defines the target and action outlets, and most kinds of cells in the Application Kit
inherit these outlets.

Figure 3-18 Relationships in the target-action paradigm

myController

outlet

myController

action
Defining the Classes of Currency Converter 47
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
For example, when a user clicks the Convert button of Currency Converter, the
button gets the required information from its cell and sends the message convert: to
the target outlet, which is an instance of your custom class ConverterController.

In the Actions column of the Connections Info window are all action methods
defined by the class of the target object and known by Interface Builder. Interface
Builder identifies action methods because their declarations follow the syntax:

- (void)doThis:(id)sender;

It looks in particular for the argument sender.

Which Direction to Connect?

Usually the outlets and actions that you connect belong to a custom subclass of
NSObject. For these occasions, you need only follow a simple rule to know which
way to draw a connection line in Interface Builder. Draw the connection in the
direction that messages will flow:

� To make an action connection, draw a line from a control object in the user
interface, such as a button or a text field, to the custom instance that should
receive the action message.

� To make an outlet connection, draw a line from the custom instance to another
object in the application.

These are only rules of thumb for the common case, and do not apply in all
circumstances. For instance, many Cocoa objects have a delegate outlet; to connect
these, you draw a connection line from the Cocoa object to your custom object.

Another way to clarify connections is to consider who needs to find whom. With
outlets, the custom object needs to find some other object, so the connection is from
the custom object to the other object. With actions, the control object needs to find
the custom object, so the connection is from the control object.

Define the Outlets of the Class
1. Type the name of the method, convert, and hit Return. IB adds the “:” for you.

1. Select ConverterController in the Classes window.

2. Choose Add Outlet from the Classes menu, or:
48 Defining the Classes of Currency Converter
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
a. Make sure that the Info window is visible and the Attributes pane is selected.

b. Make sure that the tab labeled “0 Outlets” is active.

c. Click the Add button.

Figure 3-19 Outlets and actions in the Interface Builder Info window

3. Name this outlet rateField and press Return.

4. Since the rateField outlet is still selected, all you have to do to create more
outlets is press Return. Do this once to create the dollarField outlet, and again
for the totalField outlet.

Notice the Type column in the table of outlets. By default, the type of outlets is set
to id. It works to leave it as id, since Objective-C is a dynamically typed language.
However, it’s a good idea to get into the habit of setting the types for outlets, since
statically typed instance variables receive much better compile-time error checking.
Change the type of the three outlets to NSTextField by selecting it from the combo
box lists currently set to id.
Defining the Classes of Currency Converter 49
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
ConverterController needs to access the text fields of the interface, so you’ve just
provided outlets for that purpose. But ConverterController must also communicate
with the Converter class (yet to be defined). To enable this communication, add an
outlet named converter to ConverterController.

Define the Actions of the Class
ConverterController has one action method, convert:. When the user clicks the
Convert button, a convert: message is sent to the target object, an instance of
ConverterController. Action refers both to a message sent to an object when the user
clicks a button or manipulates some other control object and to the method that is
invoked.

1. Choose Add Action from the Classes menu, or:

a. Make sure that the Info window is visible and the Attributes pane is selected.

b. Make sure that the tab labeled “0 Actions” is active.

c. Click the Add button.

2. Type the name of the method, convert, and hit Return. IB adds the “:” for you.

Connecting ConverterController to the Interface

Generate an Instance of the Class
As the final step of defining a class in Interface Builder, you create an instance of
your class and connect its outlets and actions.

1. Select ConverterController in the Classes window if it is not already selected.

2. Choose Instantiate from the Classes menu. The instance will appear in the
Instances view as shown highlighted in Figure 3-20.
50 Connecting ConverterController to the Interface
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-20 A newly-instantiated ConverterController object in Interface Builder

Connect the Custom Class to the Interface
Now you can connect this ConverterController object to the user interface. By
connecting it to specific objects in the interface, you initialize its outlets.
ConverterController will use these outlets to get and set values in the interface.

1. In the Instances display of the nib file window, Control-drag a connection line
from the ConverterController instance to the first text field, as shown in Figure
3-21 (page 52). When the text field is outlined, release the mouse button.
Connecting ConverterController to the Interface 51
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-21 Connecting the rateField outlet in Interface Builder

2. Interface Builder brings up the Connections display of the Info window. Select
the outlet that corresponds to the first field (rateField).
52 Connecting ConverterController to the Interface
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-22 Choosing the rateField outlet in the Info window

3. Click the Connect button.

4. Following the same steps, connect ConverterController’s dollarField and
totalField outlets to the appropriate text fields.

Connect the Interface Controls to the Class’s Actions

1. Control-drag a connection from the Convert button to the ConverterController
instance in the nib file window. When the instance is outlined, release the mouse
button.

2. In the Connections display, make sure target in the Outlets column is selected.

3. Select convert in the Actions column.

4. Click the Connect button.

5. Save the nib file.
Connecting ConverterController to the Interface 53
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Define the Converter Class
While connecting ConverterController’s outlets, you probably noticed that one
outlet remains unconnected: converter. This outlet identifies an instance of the
Converter class in the Currency Converter application, but this instance doesn’t
exist yet.

Define the Converter class. This should be pretty easy because Converter, as you
might recall, is a model class within the Model-View-Controller paradigm. Since
instances of this type of class don’t communicate directly with the interface, there is
no need for outlets or actions. Here are the steps to be completed:

1. In the Classes display, make Converter a subclass of NSObject.

2. Instantiate the Converter class.

3. Make an outlet connection between ConverterController and Converter. Hint:
Control-drag from the ConverterController instance to the Converter instance.

4. Save MainMenu.nib.

Implementing the Classes of Currency Converter

The final step in building the Currency Converter application is to implement the
classes you defined in the previous steps.

Generate the Source Files

1. Go to the Classes display of the nib file window.

2. Select the ConverterController class.

3. Choose Create Files in the Classes menu.

4. Verify that the check boxes in the Create column next to the .h and .m files are
selected.

5. Verify that the check box next to “Insert into Currency Converter” is selected.

6. Click the Choose button.
54 Implementing the Classes of Currency Converter
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
7. Repeat for the Converter class.

8. Save the nib file.

Now we leave Interface Builder for this application. You’ll complete the application
using Project Builder.

Objective-C Quick Reference
The Objective-C language is a superset of ANSI C with special syntax and run-time
extensions that make object-oriented programming possible. Objective-C syntax is
uncomplicated, but powerful in its simplicity. You can mix standard C with
Objective-C code.

The following summarizes some of the more basic aspects of the language. See
Inside Mac OS X: The Objective-C Programming Language for additional details.

Messages and Method Implementations

Methods are procedures implemented by a class for its objects (or, in the case of
class methods, to provide functionality not tied to a particular instance). Methods
can be public or private; public methods are declared in the class’s header file (see
above). Messages are invocations of an object’s method that identify the method by
name.

Message expressions consist of a variable identifying the receiving object followed
by the name of the method you want to invoke; enclose the expression in brackets.

[anObject doSomethingWithArg:this];

As in standard C, terminate statements with a semicolon.

Messages often result in values being returned from the invoked method; you must
have a variable of the proper type to receive this value on the left side of an
assignment.

int result = [anObj calcTotal];

You can nest message expressions inside other message expressions. This example
gets the window of a form object and makes the returned NSWindow object the
receiver of another message.
Implementing the Classes of Currency Converter 55
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
[[form window] makeKeyAndOrderFront:self];

A method is structured like a function. After the full declaration of the method
comes the body of the implementing code enclosed by braces.

Use nil to specify a null object; this is analogous to a null pointer. Note that some
Cocoa methods do not accept nil as an argument.

A method can usefully refer to two implicit identifiers: self and super. Both identify
the object receiving a message, but they affect differently how the method
implementation is located: self starts the search in the receiver’s class whereas
super starts the search in the receiver’s superclass. Thus,

[super init];

causes the init method of the superclass to be invoked.

In methods you can directly access the instance variables of your class’ instances.
However, accessor methods are recommended instead of direct access, except in
cases where performance is of paramount importance.

Declarations

Dynamically type objects by declaring them as id:

id myObject;

Since the class of dynamically typed objects is resolved at run time, you can refer to
them in your code without knowing beforehand what class they belong to. Type
outlets and objects in this way if they are likely to be involved in polymorphism and
dynamic binding.

Statically type objects as a pointer to a class:

NSString *mystring;

You statically type objects to obtain better compile-time type checking and to make
code easier to understand.

Declarations of instance methods begin with a minus sign (-), a space after the
minus sign is optional.

- (NSString *)countryName;
56 Implementing the Classes of Currency Converter
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Put the type of value returned by a method in parentheses between the minus sign
(or plus sign) and the beginning of the method name. (See above example.) Methods
that return nothing should have a return type of void.

Method argument types are in parentheses and go between the argument’s
keyword and the argument itself:

- (id)initWithName:(NSString *)name andType:(int)type;

Be sure to terminate all declarations with a semicolon.

By default, the scope of an instance variable is protected, making that variable
directly accessible only to objects of the class that declares it or of a subclass of that
class. To make an instance variable private (accessible only within the declaring
class), insert the @private directive before the declaration.

Examine an Interface (header) File in Project Builder
When Interface Builder adds the header and source files to the Currency Converter
project, the source files appear in whatever group was selected when the files were
added from Interface Builder. Since these files are class implementations, add them
to the Classes group.

1. Click Project Builder’s main window to activate it.

2. Select all four files in the project browser and drag them into the Classes group.
Implementing the Classes of Currency Converter 57
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-23 Source files in Currency Converter’s Classes group

Add a method declaration
You can add instance variables or method declarations to a header file generated by
Interface Builder. This is commonly done, but it isn’t necessary in
ConverterController’s case. But we do need to add a method to the Converter class
that the ConverterController object can invoke to get the result of the computation.
Let’s start by declaring the method in Converter.h.

1. Select Converter.h in the project browser.

2. Insert a declaration for convertAmount:atRate:.

#import <Cocoa/Cocoa.h>

@interface Converter:NSObject

{

}

- (float)convertAmount:(float)amt atRate:(float)rate;

@end
58 Implementing the Classes of Currency Converter
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
This declaration states that convertAmount:atRate: takes two arguments of type
float, and returns a float value. When parts of a method name have colons, such
as convertAmount: and atRate:, they are keywords which introduce arguments.
(These are keywords in a sense different from keywords in the “C” language.)

Now you need to update both implementation files.

Implement Currency Converter’s Classes.
For the Converter class, implement the method you just declared in Converter.h.
Method implementations go between @implementation <class name> and @end so
this is where you will add the code for Converter.

1. Select Converter.m from the Classes group in Project Builder’s main window.

2. Insert the code in for convertAmount:

#import "Converter.h"

@implementation Converter

- (float)convertAmount:(float)amt atRate:(float)rate

{

return (amt * rate);

}

@end

The method simply multiplies the two arguments and returns the result. Simple
enough.

1. Next, update the “empty” implementation of the convert: method in
ConverterController.m that Interface Builder generated for you.

- (IBAction)convert:(id)sender

{

float rate, amt, total;

amt = [dollarField floatValue];

rate = [rateField floatValue];

total = [converter convertAmount:amt atRate:rate];

[totalField setFloatValue:total];

[rateField selectText:self];
Implementing the Classes of Currency Converter 59
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
}

2. Make sure that ConverterController.m imports Converter.h by adding the
following line at the top of the source file.

#import "Converter.h."

The convert: method does the following:

� Gets the floating-point values typed into the rate and dollar-amount fields.

� Invokes the convertAmount:atRate: method and gets the returned value.

� Uses setFloatValue: to write the returned value in the Amount in Other
Currency text field (totalField).

� Sends selectText: to the rate field; this selects any text in the field or, if there is
no text, inserts the cursor so the user can begin another calculation.

Each line of the convert: method, excluding the declaration of floats, is a message.
The “word” on the left side of a message expression identifies the object receiving
the message (called the “receiver”). These objects are identified by the outlets you
defined and connected. After the receiver comes the name of the method that the
sending object (called the “sender”) wants to invoke. Messages often result in
values being returned; in the above example, the local variables rate, amt, and total
hold these values.

Implement the awakeFromNib method

Before you build the project, add a small bit of code to ConverterController.m that
will make life a little easier for your users. When the application starts up, you want
Currency Converter’s window to be selected and the cursor to be in the “Exchange
Rate per $1” field. We can do this only after the nib file is unarchived, which
establishes the connection to the text field rateField. To enable set-up operations
like this, awakeFromNib is sent to all objects when unarchiving concludes. Implement
this method to take appropriate action.

1. Add the following code to ConverterController.m.

- (void)awakeFromNib

{

[[rateField window] makeKeyAndOrderFront:self];

[rateField selectText:self];

}

60 Implementing the Classes of Currency Converter
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
The makeKeyAndOrderFront: message does as it says: It makes the receiving window
the key window (the window that receives input from the keyboard) and puts it
before all other windows on the screen. This message also nests another message,
[rateField window]. This message returns the window to which the text field
belongs, and the makeKeyAndOrderFront: method is then sent to this returned object.

You’ve seen the selectText: message before, in the convert: implementation; it
selects the text in the text field that receives the message, inserting the cursor if there
is no text.

Turbo Coding With Project Builder
When you write code with Project Builder you have a set of “workbench” tools at
your disposal, among them:

Project Find

Project Find (available from the Find pane in Project Builder) allows you to search
both your project’s code and the system headers for identifiers. Project Find uses a
project index that stores all of a project’s identifiers (classes, methods, globals, etc.)
on disk.

For C-based languages, Project Builder automatically gathers indexing information
while the source files are being compiled, so it’s necessary to build the project to
create the index before you can use Project Find.

Integrated Documentation Viewing

Project Builder supports viewing HTML documentation directly in the application.
You can access documentation and release notes about Project Builder, other
developer tools, Carbon, Cocoa, AppleScript Studio, and even access UNIX man
pages.

Additionally, you can jump directly from fully or partially completed identifiers in
your code to developer documentation and header files. To retrieve the HTML
documentation for an identifier, Option-double-click it, and to retrieve its
declaration in a header file, Command-double-click it.
Implementing the Classes of Currency Converter 61
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Indentation

In Preferences you can set the characters at which indentation automatically occurs,
the number of spaces per indentation, and other global indentation characteristics.
The Edit menu includes the Indentation submenu, which allows you to indent lines
or blocks of code on a case-by-case basis.

Delimiter Checking

Double-click a brace (left or right, it doesn’t matter) to locate the matching brace; the
code between the braces is highlighted. In a similar fashion, double-click a square
bracket in a message expression to locate the matching bracket and double-click a
parenthesis character to highlight the code enclosed by the parentheses. If there is
no matching delimiter, Project Builder emits a warning beep.

Emacs Bindings

You can use the most common Emacs commands in Project Builder’s code editor.
(Emacs is a popular editor for writing code.) For example, there are the commands
page-forward (Control-v), word-forward (Meta-f), delete-word (Meta-d),
kill-forward (Control-k), and yank from kill ring (Control-y).

Some Emacs commands may conflict with some of the standard Macintosh key
bindings. You can modify the key bindings the code editor uses to substitute other
“command” keys—such as the Option key or Shift-Control— for Emacs’ Control or
Meta keys. For information on key bindings, see the concept “About Key Bindings”
in “Programming Topic: Text Input Management,” in the Cocoa developer
documentation.

Build, Debug, and Run Currency Converter

This section explains how to build, debug, and run the application.
62 Build, Debug, and Run Currency Converter
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
What Happens When You Build An Application
By clicking the Build button in Project Builder, you run the build tool. By default,
the build tool is jam, but it can be any build utility that you specify as a project
default in Project Builder. The build tool coordinates the compilation and linking
process that results in an executable file. It also performs other tasks needed to build
an application.

The build tool invokes the compiler, passing it the source code files of the project.
Compilation of these files (Objective-C, C++, and standard C) produces
machine-readable object files for the architecture or architectures specified for the
build.

In the linking phase of the build, the build tool executes the linker, passing it the
libraries and frameworks to link against the object files. Frameworks and libraries
contain precompiled code that can be used by any application. Linking integrates
the code in libraries, frameworks, and object files to produce the application
executable file.

The build tool also copies nib files, sound, images, and other resources from the
project to the appropriate localized or non-localized locations in the application
package. An application package is a directory that contains the application
executable and the resources needed by that executable. This directory appears as a
single file in the Finder that can be double-clicked to launch the application.

Build the Project
You begin builds by clicking the Build button.

1. Save source code files and any changes to the project.

2. Click the Build button in the Project Builder window, as shown in Figure 3-24.

Figure 3-24 Project Builder’s Build button
Build, Debug, and Run Currency Converter 63
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
When you click the Build button, the build process begins. When Project Builder
finishes—and encounters no errors along the way—it displays “Build succeeded”
in the lower left corner of the window.

Look Up Documentation
When Project Builder builds a project, it also generates an index of the source files,
included frameworks, and associated documentation. You can jump directly to
documentation and header files within Project Builder. Try it out:

1. Return to ConverterController.m.

2. Option-double-click the word setFloatValue in the code. (Hold down the
Option key and double-click the word.) A pop-up menu appears with method
names, such as -[NSControl setFloatValue:].

Figure 3-25 The documentation pop-up menu

3. Select the method associated with NSControl. Project Builder opens an
HTML-formatted copy of the documentation right in the editor pane, and jumps
to a description of the method you requested.
64 Build, Debug, and Run Currency Converter
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-26 Documentation in Project Builder

4. Click the Back button (the left arrow at the top of the editor pane) to return to
your code.

5. Command-double-click the same word. A similar pop-up menu appears.

6. Again select the -[NSControl setFloatValue:] method. This time, Project Builder
jumps to the method declaration in the associated header file.

Figure 3-27 Header lookup in Project Builder

7. Click the Back button.
Build, Debug, and Run Currency Converter 65
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
If you cannot get the pop-up menus to appear, the project is probably not indexed.
To index the project, build it.

Debug the Project
Of course, rare is the project that is flawless from the start. Project Builder is likely
to catch some errors when you first build your project. To see the error-checking
features of Project Builder, introduce a mistake into the code.

1. Delete a semicolon in the code, creating an error.

2. Click the Build button on the Project Build panel.

3. Click the error-notification line that appears in the build error browser.

4. Fix the error in the code.

5. Re-build the project.

Using the Graphical Debugger
To smooth the task of debugging, Project Builder puts a graphical user interface
over the GNU debugger, GDB. To help familiarize you with the debugger (not
every step is likely to go so smoothly as the currency conversion!) use it now to step
through the currency conversion code.

1. Click ConverterController.m in Project Builder’s Groups & Files view.

2. Locate the convert: method.

3. Set a breakpoint by clicking in the column to the left of the code listing.
66 Build, Debug, and Run Currency Converter
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Figure 3-28 Setting a breakpoint in Project Builder

4. Run the debugger by clicking the Debug button, or type Command-R.

5. Test the conversion by entering values and clicking the Convert button.

6. When you click Convert, the debugger will activate and allow you to step
through the code line by line and examine the results of each step.

To perform complex debugging tasks, you can use the GDB console. Click the
Console tab at the top right-hand corner of the screen to expose the Console. When
you click in the Console window and press Return, the (gdb) prompt appears.

There are many GDB commands that you can type at this prompt, which are not
represented in the user interface. For on-line information on these commands, enter
“help” at the prompt.
Build, Debug, and Run Currency Converter 67
  Apple Computer, Inc. July 2002

C H A P T E R 3

Building the Currency Converter Application
Run Currency Converter
Enter some rates and dollar amounts and click Convert. Also, select the text in a
field and choose Services sub-menu in the Application menu; this menu now lists
the other applications that can do something with the selected text.

Of course, the more complex an application is, the more thoroughly you will need
to test it. You might discover errors or shortcomings that necessitate a change in
overall design, in the interface, in a custom class definition, or in the
implementation of methods and functions.

Although it’s a simple application, Currency Converter consolidates all of the
concepts and techniques introduced in the previous chapter. By now you have a
much better grasp of the skills you’ll need to develop Cocoa applications. Let’s
review what you’ve learned:

� Composing a graphical user interface (GUI) with Interface Builder

� Testing the interface

� Designing an application using the Model-View-Controller paradigm

� Specifying a class’s outlets and actions

� Connecting the class instance to the interface via its outlets and actions

� Class implementation basics

� Building an application and error resolution
68 Build, Debug, and Run Currency Converter
  Apple Computer, Inc. July 2002

C H A P T E R 4
4 Cocoa Resources
This chapter describes a number of resources that will help you on the road to
learning Cocoa: developer documentation, websites, email lists, and books.

Cocoa Developer Documentation

Apple’s Cocoa Developer Documentation includes a reference for the complete
Cocoa API. It also includes Programming Topics, which contain conceptual
material and specific tasks in a variety of programming domains. Also see the
“Getting Started” section for material targeted at those new to Cocoa programming.

You can access the Cocoa Developer Documentation in a number of ways:

� Choose Cocoa Help from Project Builder’s Help menu, or from Mac Help’s
Developer Help Center.

� Navigate to /Developer/Documentation/Cocoa on your hard disk.

� Visit http://developer.apple.com/techpubs/macosx/Cocoa/
CocoaTopics.html with your web browser for the latest version of the
documentation.

� Use Project Builder’s Find pane to search through developer documentation and
header files, as well as identifiers in your source files. The Find pane is available
in the main window in Single Window mode, or by choosing Show Batch Find
from the Find menu.

� In a Project Builder editor pane, option-double-click a identifier to retrieve
documentation, or command-double-click it to retrieve it associated header file.
Cocoa Developer Documentation 69
  Apple Computer, Inc. July 2002

http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html
http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

C H A P T E R 4

Cocoa Resources
You can also browse frameworks in your project directly from Project Builder. For
Cocoa developers, browse Foundation.framework > Headers and
AppKit.framework > Headers inside Frameworks > Other Frameworks, located in
your target’s group in the Groups & Files pane.

Developer Tools Help

Apple provides help documentation for the majority of the developer tools in Mac
OS X, including Project Builder, Interface Builder, command-line tools, and others.

For help with Project Builder, choose Project Builder Help from Project Builder’s
Help menu.

For help with Interface Builder, choose Interface Builder Help from Interface
Builder’s Help menu.

For all developer tools, there are a number of places you can go for help:

� Choose Developer Tools Help from Project Builder’s Help menu, or from Mac
Help’s Developer Help Center.

� Navigate to /Developer/Documentation/DeveloperTools on your hard disk.

� Visit http://developer.apple.com/techpubs/macosx/DeveloperTools/
devtools.html for the latest version of the documentation.

Additionally, Project Builder and Interface Builder provide help tags, also known
as tool tips, to describe parts of the interface when the mouse arrow hovers over
those parts.
70 Developer Tools Help
  Apple Computer, Inc. July 2002

http://developer.apple.com/techpubs/macosx/DeveloperTools/devtools.html
http://developer.apple.com/techpubs/macosx/DeveloperTools/devtools.html

C H A P T E R 4

Cocoa Resources
Mailing Lists

Apple supports many public mailing lists to let developers and user communicate
about various topics. The cocoa-dev mailing list is a great resource for Cocoa
developers, from beginners to experts. The studentdev list is a place for students to
discuss all facets of development with Apple products, including Cocoa.

You can sign up for mailing lists and browse list archives at the following address:

http://lists.apple.com

Books

O’Reilly & Associates has published two books on Cocoa development, one
authored by Apple:

� Learning Cocoa, by Apple Computer, Inc.

� Building Cocoa Applications: A Step-by-Step Guide, by Simson Garfinkel and
Michael K. Mahoney

Several other books on Cocoa development have been written, and more will be
published in the future, so visit the programming section of your favorite bookstore.

Other Resources

� The Apple Developer Connection (ADC) provides many useful technical and
business services for Cocoa developers. See http://developer.apple.com for
developer documentation, sample code, information about developer
programs, and business-related support.
Mailing Lists 71
  Apple Computer, Inc. July 2002

http://lists.apple.com
http://developer.apple.com

C H A P T E R 4

Cocoa Resources
� There are several third-party websites devoted to Cocoa development. You can
search Google to find many Cocoa resources on the Web:

http://www.google.com/search?hl=en&lr=&q=cocoa+programming
72 Other Resources
  Apple Computer, Inc. July 2002

http://www.google.com/search?hl=en&lr=&q=cocoa+programming

	Developing Cocoa Objective-C Applications: A Tutorial
	Contents
	Introduction
	What You’ll Learn in This Tutorial

	Designing the Currency Converter Application
	Designing the Currency Converter Application
	Object Notation
	The Model-View-Controller (MVC) Paradigm
	Model Objects
	View Objects
	Controller Object
	Hybrid Models
	MVC in Currency Converter’s Design

	Building the Currency Converter Application
	Creating the Currency Converter Project
	Open Project Builder
	Choose the New Project Command
	Select Project Type

	Creating the Currency Converter Interface
	Nib Files
	Open the Main Nib File
	Windows in Cocoa
	NSWindow and the Window Server
	Application, Window, View
	Key and Main Windows

	Resize the Window
	Set the Window’s Title and Attributes
	Place a Text Field, Resize and Initialize It
	Duplicate an Object
	Change the Attributes of a Text Field
	Assign Labels to the Fields
	Add a Button to the Interface and Initialize It
	Add a Horizontal Decorative Line
	Aqua Layout and Object Alignment
	Finalize the Window Layout
	Enable Tabbing Between Text Fields
	Set the initialFirstResponder for the Window
	Test the Interface

	For Free with Cocoa
	Application and Window Behavior
	Controls and Text
	Menu Commands
	Document Management
	File Management
	Communicating With Other Applications
	Custom Drawing and Animation
	Localization
	Editing Support
	Printing
	Help
	Plug-in Architecture

	Defining the Classes of Currency Converter
	Classes and Objects
	Specify a Subclass
	Paths for Object Communication: Outlets, Targets, and Actions
	Outlets
	When You Make a Connection in Interface Builder
	Target/Action in Interface Builder
	Which Direction to Connect?

	Define the Outlets of the Class
	Define the Actions of the Class

	Connecting ConverterController to the Interface
	Generate an Instance of the Class
	Connect the Custom Class to the Interface
	Connect the Interface Controls to the Class’s Actions
	Define the Converter Class

	Implementing the Classes of Currency Converter
	Generate the Source Files
	Objective-C Quick Reference
	Messages and Method Implementations
	Declarations

	Examine an Interface (header) File in Project Builder
	Add a method declaration
	Implement Currency Converter’s Classes.
	Implement the awakeFromNib method

	Turbo Coding With Project Builder
	Project Find
	Integrated Documentation Viewing
	Indentation
	Delimiter Checking
	Emacs Bindings

	Build, Debug, and Run Currency Converter
	What Happens When You Build An Application
	Build the Project
	Look Up Documentation
	Debug the Project
	Using the Graphical Debugger
	Run Currency Converter

	Cocoa Resources
	Cocoa Developer Documentation
	Developer Tools Help
	Mailing Lists
	Books
	Other Resources

