
Intro to Objective C on the NeXT Machine
by Gerrit Huizenga

gerrit@mentor.cc.purdue.edu

Prerequisites:
Basic understanding of the C Programming Language

Helpful Extras:
Some experience with the NeXT Machine
Some familiarity with SmallTalk
Experience with Ansi C or the Gnu C compiler
Familiarity with Objective Oriented Programming

Outside Reading
Object Oriented Programming: An Evolutionary Approach

by Brad Cox
Objective-C Compiler Version 4.0 Reference Manual

The Stepstone Corporation
Display PostScript System

Adobe Systems Incorporated
NeXT Technical Documentation

NeXT Incorporated

Goal
This course will provide an introduction to Object Oriented Programming using Objective
C on the NeXT machine. If you are interested in doing any software development on the
NeXT machine, this course will help get you started. I will discuss the terminology and
concepts used in Objective Oriented Programming as well as describe the syntax used in
Objective C. I will show how to read an Objective C spec sheet and describe some of
standard Classes of Objects provided by NeXT and how to use some of them.

Future Courses

I plan to teach the following courses in the future:

Introduction to the NeXT Interface Builder
Intermediate Objective C on the NeXT machine
Advanced Interface Builder

I may also teach a class a more advanced class on Objective C and the NeXT
Object Classes.

1

Object Oriented Programming

What is it?

Grouping of functionality and data

Separation of interface and implementation

Type-dependent operations

Code Sharing

Hierarchical partitioning of functionality

A different way of solving problems

How does it work?

Syntactical support for abstract data types

Message-sends instead of function calls

Compiler support for inheritance

Programmer thinks differently

2

Abstract Data Types

Computer programs manipulate data.
What they do to that data is important.
How they do it or what form the data takes is not.

So...create new data types and and declare exactly what the program can
do to manipulate a variable of that type.

This provides a form of data integrity...

And provides flexibility for future modification of the data’s form (i.e. for
efficiency, bug-fixing, or enhancement).

Terminology:

In object-oriented languages, these data types are called Classes.

A variable of a given class is an instance of that class.

The word object is often used to refer to an instance of a class (e.g., a
Button object is an instance of the Button class).

The operations that a given class implements are called methods (not
functions).

3

Messaging

We can ask an object to perform a method without knowing what its class
is.

Instead of calling a function to perform some operation on an object, we
send that object a message asking it to perform that operation on itself.

Depending on the class of the object, different code will be executed by the
computer.

This is useful since a given message may be meaningful to different
classes of objects (e.g. "size" is meaningful both to a stack and a queue
even though each may calculate its size in a very different way.)

Terminology:

The messages sent to an object are called messages.

Instead of calling a function, we send a message to an object to get it to
perform one of its methods.

4

Example of Object Oriented design

The Unix File System is Object Oriented. Most of you are familiar with the
following Unix system calls:

open()
close()
read()
write()
lseek()
ioctl()

The open() call takes a file name as one of its arguments and returns a
handle to a file. The open call may perform some device specific
initialization, such as supplying DTR to a terminal line or locating a disk
drive which contains the named file. In the kernel, there is a switch
statement which decides which device specific routines be called based on
the filename that you have provided. Each of the other routines listed
above have similar code to decide how to do buffering and actually locate
the data that you are working with, either by sending the appropriate
commands to the disk drive or tape drive, or waiting for serial input from a
terminal line, or sending data to a printer.

As the person using the routines though, you generally don’t have to know
which set of operations will be performed by the kernel, but that the kernel
will do whatever is necessary to fulfill your request.

In this example, the class might be FileManipulation, the methods would be
open(), close(), etc, and an object would be the file descriptor that the
open() routine returns.

5

Inheritance

Related classes can share common code.

A new class can be created which inherits all the functionality and
data of some other class (i.e. instances of the new class understand
all the messages that an instance of the class it inherits from
understands).

The new class can choose to respond to any given message in a
different way than the class it inherits from does and can also define
new methods.

The new class can modify the data used to implement the class it
inherits from and can add to that data.

Terminology

A class which inherits from another class is a subclass of the class it
inherits from. A class is a subclass of its superclass.

When a subclass responds to a message in a different way than its
superclass does, the subclass is said to have overridden its superclass’s
method.

Subclass is often used as a verb, "I subclassed the Vehicle class to create
the Car class."

6

Programming

The thought processes of the programmer are as much a part of object-
oriented programming as any of the above.

Programs must be thought of as a collection of cooperating pieces of data
(objects) rather than a thread of control.

Program design is data-oriented rather than process-oriented.

User-interface programming is fundamentally object-oriented.

Terminology:

Object-oriented programmers use phrases like:

"When the user presses this button, it sends a message to this object which
calculates something and then sends a message to this other object which
updates this and..."

instead of

"We wait for the user to press a button and then we decide which one it
was, and, based on that, we decide what to do, then we wait for the user to
do something else..."

7

Objective C

In Objective C, we describe the interface to a class using using the
@interface declaration:

@interface Stack : Object

followed by the variables used to implement the object (these are called the
class’s instance variables, and each instance of this class has its own
copy of these variables):

{
StackLink *top;
unsigned int size;

}

Then we list the methods that this class implements (i.e. the messages that
objects of this class understand):

- free;

- push: (int) anInt;

- (int) pop;

- (unsigned int) size;

and finish up with the @end declaration:

@end

8

This would normally be stored in a header file called "Stack.h". The
definitions for the superclass of the class you are subclassing are imported
at the beginning of the file. An import uses the #import directive which is
similar to the #include directive, but ensures that the file is only include by
your file once. With all of this in place, the file would look like this:

#import <objc/Object.h>

@interface Stack : Object

{
StackLink *top;

unsigned int size;
}

- free;
- push: (int) anInt;
- (int) pop;
- (unsigned int) size;

@end

9

Note that in the @interface declaration, we specify the class that this class
inherits from (its superclass). The superclass of the Stack class is the
Object class (all classes are at least a subclass of the Object class).

Method names always contain a colon (":") before any of the arguments
that are passed along in the message (e.g. push:).

Any number of parameters may be sent in a message, each separated by a
keyword ending in colon. For example, if we wanted to be able to push two
integers on the stack with one message, we could define the method:

- push: (int) first and: (int) second;

The name of this method is "push:and:".

Parameters passed in the message are declared using the C "type cast"
notation. Any type that is valid as a C function parameter is valid as a
method parameter. The return type of a method is also specified using the
"type cast" notation. If no return type is specified, then the method is
assumed to return a pointer to an object.

10

We define the implementation of the class (in a sepearate file from the
interface) using the @implementation directive:

@implementation Stack

Objective C is just like normal ANSI-C (as implemented by the GNU C
compiler), except that it provides the ability to define classes, create
instances of objects, and send messages to objects. Two new fundamental
types are added to the language:

id pointer to an object
SEL a message (we sometimes call messages selectors, thus the

abbreviation).

Both variables of type id and type SEL are valid parameters that can be
sent in a messages or passed to a C function.

Messages are sent using a Smalltalk-like syntax:

id s;
int i;

s = [Stack new];
[s push:34];
i = [s pop];

11

In the implementation of a class, methods can manipulate the class’s
instance variables (e.g. the linked list pointed to by top in the Stack
class), can generally do anything normally allowed in C, and can send
messages to objects.

What objects can an object send messages to?

itself (this is very common)

itself, but use its superclass’s implementation!

objects pointed to by one of its instance variables (i.e. instance
variables of type id).

objects passed to it as a parameter in a message sent to us by
some other object

factory objects (factory objects are sometimes knowns as class
objects)

12

How does an object send a message to itself?

Example: [self push:34.0];

self is a special variable which is a pointer to the object which
received the message which invoked the currently executing
method(!). In other words, it is the receiver of the message.

Example: Remember push:and: ? Here is probably how that
method would be implemented:

- push: (int) first and: (int) second
{

[self push: first];
[self push: second];
return self;

}

Notice that the push:and: method returns self. Remember that if a
method does not specify the type of its return value, the default is to
return a pointer to an object (i.e. something of type id). This means
that, barring any other sensible thing to return, methods should
always return self!

13

How can an object send a message to itself but use its superclass’s
implementation? And why would someone ever want to do that?

Why? ...because in the implementation of a method which is
overridden (i.e. the superclass implements it, and the subclass
implements it differently, a class may want (and often does want) to
perform its superclass’s implementation as part of its own
implementation.

How? ...any message an object sends to the pseudo-variable super
will cause its superclass’s implementation of the method to be
performed.

An object can send a message to super in any method. super
implicitly means "self, but use superclass’s implementation"

There is one and only one factory object per class. There is a global
id variable which points to it, and that variable’s name is the same as
the class’s name. You send messages to it to create new instances of
that class or to query class-specific (as opposed to instance-specific)
information.

Example:

id s;

s = [Stack new];

14

The file which contains the implementation of the class ends with the
@end directive (just like the interface file does).

Example:

@implementation Stack

- free
{

StackLink *next;

while (top != (StackLink*) 0) {
next = top->next;
free((char *) top);
top = next;

}

return [super free];
}

< other methods >

@end

15

File: Stack.h

#import <objc/Object.h>

typedef struct StackLink {
int data;
struct StackLink *next;

} StackLink;

@interface Stack : Object
{

StackLink *top;
unsigned int size;

}

- free;
- push: (int) value;
- (int) pop;
- (unsigned int) size;

@end

16

#import "Stack.h"

@implementation Stack

#define NULL_LINK (StackLink *) 0

- free
{

StackLink *next;

while (top != NULL_LINK) {
next = top->next;
free ((char *) top);
top = next;

}
return [super free];

}

- push: (int) value
{

StackLink *newLink;

newLink = (StackLink *)malloc(sizeof StackLink);
if (newLink == 0) {

fprintf(stderr, “Out of memory\n”);
return nil;

}
newLink->data = value;
newLink->next = top;
top = newLink;
size++;

return self;
}

17

- (int) pop
{

int value;
StackLink *topLink;

if (0 != size) {
topLink = top;
top = top->next;
value = topLink->data;
free (topLink);
size--;

} else {
value = 0;

}
return value;

}

- (unsigned int) size
{

return size;
}

@end

18

Factory Objects

Objective-C automatically creates a factory object for each class
used in an application.

Exactly 1 instance of a factory object per class exists at runtime

The name of the factory object is the name of the class

The primary purpose of a factory object is to provide a mechanism to
create instances of the class:

id myStack;

myStack = [Stack new];

Factory objects respond to factory methods.

Factory methods are indicated by a "+" preceding the name when
declared and defined.

+ new
{

self = [super new];
top = (StackLink *) 0;
return self;

}

Factory objects are not instances of the class and therefore do not
have access to the instance variables associated with an instance of
the class, so factory methods typically redefine self before accessing
instance variables.

19

File: CalculatorBrain.h

#import <appkit/appkit.h>
#import <objc/Object.h>

@interface CalculatorBrain : Object
{

id stack;
int accumulator;
BOOL accumulatorEntered;
id display;

}

/* Private */

- handleDigit: (int) digit;

/* Public */

- add:sender;
- digit:sender;
- divide:sender;
- enter:sender;
- multiply:sender;
- subtract:sender;
- zero:sender;

@end

20

File CalculatorBrain.m

#import "CalculatorBrain.h"
#import "Stack.h"

@implementation CalculatorBrain

+ new
{

self = [super new];
stack = [Stack new];
accumulatorEntered = YES;
return self;

}

- setDisplay:anObject
{

display = anObject;
return self;

}

- handleDigit: (int) digit
{

if (accumulatorEntered == YES) {
accumulator = digit;
accumulatorEntered = NO;

} else {
accumulator = accumulator * 10 + digit;

}

[display setIntValue:accumulator];
return self;

}

21

- add: sender
{

if (accumulatorEntered == NO) { /* Hit plus sign, pretend Enter hit */
[self enter:self];

}
accumulator = [stack pop] + [stack pop];
[self enter:self];
[display setIntValue:accumulator];
return self;

}

- digit:sender
{

int operand;

return [self handleDigit:[sender selectedTag]];
}

- divide:sender
{

int operand;

if (accumulatorEntered == NO) {
[self enter:self];

}
operand = [stack pop];
if (operand != 0) {

accumulator = [stack pop] / operand;
} else {

[stack pop];
accumulator = MAXINT;

}
[self enter:self];
[display setIntValue:accumulator];
return self;

}

22

- enter:sender
{

[stack push:accumulator];
accumulatorEntered = YES;
return self;

}

- multiply:sender
{

if (accumulatorEntered == NO) {
[self enter:self];

}
accumulator = [stack pop] * [stack pop];
[self enter:self];
[display setIntValue:accumulator];
return self;

}

- subtract:sender
{

int tmp; /* needed because order of eval not defined for “+” below */
if (accumulatorEntered == NO) {

[self enter:self];
}
tmp = - [stack pop];
accumulator = tmp + [stack pop];
[self enter:self];
[display setIntValue:accumulator];
return self;

}

- zero:sender
{

return [self handleDigit:0];
}
@end

23

Reading A Class Specification

There are three software kits currently available on the NeXT Machine. These

three kits are the Application Kit, the Sound Kit and the Music Kit. There are also

some classes that come with the Objective C compiler. These kits are

documented in detail in Chapter 21 of the NeXT Technical Documentation which

is available on any NeXT machine. The documentation for the classes provided

by these kits are prepared in a standard form, called a Class Specification.

The class specifications are grouped according to kit; within each kit they are

arranged in alphabetical order by class. Each class specification details the

instance variables the class declares, the methods it defines, and any special

constants and defined types it uses. There’s also a general description of the

class and its place in the inheritance hierarchy. However, you won’t find a

discussion of any kit’s design or an explanation of how to go about using the kit to

program an application. You may occasionally encounter terms that assume

some prior knowledge about the kits, Mach, the Display PostScript system, or

object-oriented programming. This information is briefly described in Chapter 1

of the NeXT Technical Documentation, and described more thoroughly in the

volume of the NeXT Technical Documentation entitled Concepts.

A more complete guide to reading the specifications is available at the beginning

of Chapter 21 of the NeXT Technical Documentation.

24

Organization

Information about a class is presented under the following headings:

INHERITS FROM

The first line of a class specification lists the classes that the class

being described inherits from. For example the Menu class in the

application kit has the following inheritance hierarchy:

Panel : Window: Responder : Object

The first class listed (Panel, in this example) is the class’s

superclass. The last class listed is always Object, the root of all

Objective-C inheritance hierarchies. The classes between show the

chain of inheritance from Object to the superclass.

REQUIRES HEADER FILE

Each kit is identified by a master header file that includes almost

all the other header files you need to program with the kit:

Kit Header File

Application Kit /usr/include/appkit/appkit.h

Music Kit /usr/include/musickit/musickit.h

Sound Kit /usr/include/soundkit/soundkit.h

25

Each of these header files include the master header file for

classes which come with the compiler. If you aren’t using one of

these header files, you should include <objc/objc.h>.

Occasionally, a class will also list a UNIX header file not included

by the master header file.

Because the kits are written in Objective-C, they make use of

constants and types defined in the principal header file for

Objective-C, objc.h. Only a handful of these constants and types

are used by the kits, but they’re used pervasively. For

convenience, they’re listed below.

Defined Types:

id An object.

STR A C string. STR is a shorthand for (char *). It’s used

only for an array of characters that’s terminated by

the null character.

SEL A method selector. SEL is another shorthand for

(char *), where the character string can be thought of

as a method name. However, SEL is used only as a

unique code for a method name, rather than as a

pointer to an actual occurrence of the name in

memory. Values should be assigned to SEL

variables only with the @selector operator:

SEL aMethod;

aMethod = @selector(moveTo::);

26

This allows selectors to be tested by matching the

value of a SEL code, rather than by comparing all

the characters in a string.

BOOL A char that holds one of two values: YES (true) or

NO (false).

Constants:

nil A null object id, (id)0.

YES Boolean true, (BOOL)1.

NO Boolean false, (BOOL)0.

DEFINED IN

The name of the kit is given after this heading, along with the

version number of the software release that’s documented. The

table below lists the libraries where the kits are defined:

Kit Library

Application Kit libNeXT_s.a

Sound Kit libNeXT_s.a

Music Kit libmusickit.a

The common classes that come with the Objective-C compiler are

defined in libsys_s.a. Since these classes aren’t part of a kit,

they’re introduced by a slightly different heading, “DEFINED AS,”

and are identified as common classes.

The “_s” suffix on libNeXT_s.a and libsys_s.a designates them as

shared libraries. All three libraries reside in the /usr/lib directory.

27

CLASS DESCRIPTION

This section gives a general description of the class. It tells how

the class fits into the general design of its kit and how your

application can make use of it.

INSTANCE VARIABLES

The instance variables that are incorporated into each object

belonging to the class, including instance variables inherited from

other classes, are listed next. The first instance variable in all the

lists is one inherited from the Object class, isa. isa identifies the

class that an object belongs to for the Objective-C run-time

system; it should never be altered or read directly.

After all the instance variables are listed, those declared in the

class being described are explained.

However, instance variables that are for the internal use of the

class are neither listed nor explained. These instance variables

all begin with an underscore (_) to prevent collisions with names

that you might choose for instance variables in a subclass you

define.

28

METHOD TYPES

Methods are next listed by name and grouped by type—for

example, methods used to draw are listed separately from

methods used to handle events. This directory includes all the

principal methods defined in the class and some that are defined

in classes it inherits from. Inherited methods are followed by the

name of the class where they’re defined; they’re included in the

directory to let you know which inherited methods you might

commonly use with instances of the class and where to look for a

description of those methods.

CLASS METHODS

INSTANCE METHODS

A detailed description of each method defined in the class follows

the classification by type. Methods that are used by class objects

(factory objects) are presented first; methods that are used by

instances (the objects produced by the class, instance methods)

are presented next. The descriptions within each group are

ordered alphabetically by method name.

Each description begins with the syntax of the method’s

arguments and return values, continues with an explanation of

the method, and ends, where appropriate, with a list of other

related methods. Where a related method is defined in another

class, it’s followed by the name of the other class within

parentheses.

29

All methods have reliable return values. Unless the method

description mentions otherwise, every method returns self. This

allows you to chain messages together:

[[[receiver message1] message2] message3];

Internal methods used to implement the class aren’t listed. Since

you shouldn’t override any of these methods, or use them in a

message, they’re excluded from both the method directory and

the method descriptions. However, you may encounter them

when looking at the call stack of your program from within the

debugger. A private method is easily recognizable by the

underscore (_) that begins its name.

There are a couple of other sections in some of the class specifications.

However, they are beyond the scope of this class.

30

List

INHERITS FROM Object

REQUIRES HEADER FILES <objc/List.h>

DEFINED AS A common class

CLASS DESCRIPTION

List allows easy manipulations of collections of objects. Collections can be manipulated
as fixed or variable size lists, sets, or ordered collections.

INSTANCE VARIABLES

Inherited from Object struct _SHARED *isa;

Declared in List id *dataPtr;
unsigned numElements;
unsigned maxElements;
unsigned growAmount;

dataPtr data of the List object

numElements Actual number of elements

maxElements Total allocated elements

growAmount Number of elements to grow or shrink the array by

METHOD TYPES

Creating and freeing a List object - free
- freeObjects
+ new
+ newCount:

Manipulating objects by index - addObject:
- count
- insertObject:at:
- lastObject
- objectAt:
- removeLastObject
- removeObjectAt:
- replaceObject:with:

Manipulating objects by id - addObjectIfAbsent:

31

- indexOf:
- removeObject:
- replaceObjectAt:with:

Emptying the List - empty

Sending messages to the objects - makeObjectsPerform:
- makeObjectsPerform:with:

Managing the storage capacity - capacity
- capacity:
- setGrowAmount:

Archiving - read:
- write:

FACTORY METHODS

new
+ (List *)new

Returns a new List.

newCount:
+ (List *)newCount:(unsigned)numSlots

Returns a new List object large enough to hold numSlots objects.

INSTANCE METHODS

addObject:
− addObject:anObject

Puts anObject at the end of the List.

addObjectIfAbsent:
− addObjectIfAbsent:anObject

Searches the List for anObject and, if it isn’t already in the List, adds it at the end. If
anObject is already in the list, this method does nothing.

capacity
− (unsigned)capacity

Returns the maximum number of objects that can be stored in the List without increasing
its current capacity.

capacity:
− capacity:(unsigned)numSlots

32

Sets the storage capacity of the List to numSlots objects. It’s best not to use this method.

count
− (unsigned)count

Returns the number of objects currently in the List.

empty
− empty

Empties the List of all its objects.

free
− free

Deallocates the List object, but not the objects that are in the List.

freeObjects
− freeObjects

Deallocates storage for the List object and for every object in the List. Does not free
argument itself. Since free methods are performed, no side effect should be produced on
the List object itself during these performs.

indexOf:
− (unsigned)indexOf:anObject

Returns the index of the first occurrence of anObject in the List, or −1 if anObject isn’t in
the List.

insertObject:at:
− insertObject:anObject

at:(unsigned)index

Puts anObject into the List at index, moving objects down one slot to make room, and
returns self. However, if an object isn’t already located at index —that is, if index is
greater than the value returned by count—this method just returns nil.

lastObject
− lastObject

Returns the last object in the List, or nil if there are no objects in the List. This method
doesn’t remove the object that’s returned.

makeObjectsPerform:
− makeObjectsPerform:(SEL)aSelector

Sends an aSelector message to each object in the List, starting with the first and
continuing through the List to the last object. The aSelector method must be one that
takes no arguments. List should not be modified by side effects during the execution of
this method.

33

makeObjectsPerform:with:
− makeObjectsPerform:(SEL)aSelector

with:anObject

Sends an aSelector message to each object in the List, starting with the first and
continuing through the List to the last object. The aSelector method must be one that
takes a single argument of type id. The message is sent with anObject as the argument.
List should not be modified by side effects during the execution of this method.

objectAt:
− objectAt:(unsigned)index

Returns the id of the object located at slot index, or nil if index is beyond the end of the
List.

read:
− read:(NXTypedStream *)stream

Reads the List object from an archive

removeLastObject
− removeLastObject

Removes the object occupying the last position in the List and returns it. If there are no
objects in the List, this method returns nil.

removeObject:
− removeObject:anObject

Removes the first occurrence of anObject from the List, and returns it. If anObject isn’t
in the List, this method returns nil.

The positions of the remaining objects in the List are adjusted so there’s no gap.

removeObjectAt:
− removeObjectAt:(unsigned)index

Returns the object located at index and removes it from the list. If there is no object at
index, this method returns nil.

The positions of the remaining objects in the List are adjusted so there’s no gap.

replaceObject:with:
− replaceObject:anObject

with:newObject

Returns the object at index and replaces it with newObject. If there is no object at index
or newObject is nil, this method simply returns nil.

replaceObjectAt:with:

34

− replaceObjectAt:(unsigned)index
with:newObject

Replaces the first occurrence of anObject in the List with newObject and returns
anObject. However, if newObject is nil or anObject isn’t in the List, this method does
nothing but return nil.

setGrowAmount:
− setGrowAmount:(unsigned)numSlots

Sets the amount of memory that the List should grow or shrink by. The argument,
numSlots, is a number of objects.

write:
− write:(NXTypedStream *)stream

Stores the List object in an archive

List Storage HashTable

Object

StreamTable

Figure 1. Inheritance Hierarchy of the Common Classes

35

OpenPanel

INHERITS FROM SavePanel : Panel : Window : Responder : Object

REQUIRES HEADER FILES appkit.h

DEFINED IN The Application Kit, version 0.9

CLASS DESCRIPTION

The OpenPanel provides a convenient way for an application to query the user for the
name of a file to open. It can only be run modally (the user should use the directory
browser in the Workspace for non-modal opens). It allows the specification of certain
types (i.e. file name extensions) of files to be opened. Every application has one and only
one OpenPanel, and the method new returns a pointer to it.

See the class description for SavePanel for more information.

INSTANCE VARIABLES

Inherited from Object struct _SHARED *isa;

Inherited from Responder id nextResponder;

Inherited from Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _wFlags wFlags;
struct _wFlags2 wFlags2;
id miniWindowView;

Inherited from Panel (none)

Inherited from SavePanel id form;
id browser;
id okButton;
id accessoryView;
char filename[];
char directory[];
char **filenames;

36

const char *requiredType;
struct _spFlags spFlags;

Declared in OpenPanel NXFileFilterFunc fileFilterFunc;
const char *const *filterTypes;

fileFilterFunc function to filter files

filterTypes types allowed to open

METHOD TYPES

Creating an OpenPanel + newContent:style:backing:buttonMask:defer:

Filtering files - allowMultipleFiles:
- fileFilterFunc
- setFileFilterFunc:

Querying the chosen files - filenames

Running the OpenPanel - runModalForDirectory:file:
- runModalForDirectory:file:types:
- runModalForTypes:

FACTORY METHODS

newContent:style:backing:buttonMask:defer:
+ newContent:(const NXRect *)contentRect

style:(int)aStyle
backing:(int)bufferingType
buttonMask:(int)mask
defer:(BOOL)flag

Creates a new OpenPanel (actually every app has no more than one OpenPanel, this
returns a pointer to it). A simpler interface to creating the OpenPanel is via the inherited
new method which calls this method with all the appropriate arguments.

37

INSTANCE METHODS

allowMultipleFiles:
− allowMultipleFiles:(BOOL)flag

If flag is YES, then the user can select more than one file in the browser. If multiple files
are allowed, then the filename method will be non-NULL only if one and only one file
was selected. The filenames method will always return the selected files (even if only
one file was selected). Note further that, though filename always returns a fully-specified
path, filenames never returns a fully-specified path (the files in the list are always relative
to the path returned by directory).

fileFilterFunc
− (NXFileFilterFunc)fileFilterFunc

Sets the function that will be called to filter files that match the list of suffixes.

filenames
− (const char *const *)filenames

Returns a NULL terminated list of files (relative to the path returned by directory). This
will be valid even if allowMultipleFiles is NO. This is the preferred way to get the
name(s) of the file(s) that the user has chosen.

runModalForDirectory:file:
− (int)runModalForDirectory:(const char *)path

file:(const char *)name

Initializes the panel to the file specified by path and name, then displays it and begins its
event loop.

runModalForDirectory:file:types:
− (int)runModalForDirectory:(const char *)path

file:(const char *)name
types:(const char *const *)fileTypes

Loads up the directory specified in path and optionally set name as the default file to
open. fileTypes is a NULL-terminated list of suffixes (not including the “.”’s) to be used
to filter which files the user is given the opportunity to open. If the FIRST item in the list
is a NULL, then all ASCII files will be included.

runModalForTypes:
− (int)runModalForTypes:(const char *const *)fileTypes

Same as runModalForDirectory:file:types: except that the last directory from which a
file was chosen is used.

38

setFileFilterFunc:
− setFileFilterFunc:(NXFileFilterFunc)aFunc

Sets the function that will be called to filter files that will be displayed in the browser.
The file filter function should return YES if it wants the file to be included in the list of
chooseable files, NO otherwise.

39

SelectionCell

Object

ActionCell

ButtonCell

MenuCell

Responder

Application

View

Box Text ScrollView

SavePanel FontPanel PrintPanel ChoosePrinter

OpenPanel

Control

Matrix Slider Scroller

Form

Window

Panel

TextFieldCell SliderCell

ButtonTextField

Speaker Listener

FormCell

Pasteboard

Cell

Bitmap

Cursor

Font FontManager PrintInfo

Menu

PopUpList

PageLayout

Figure 2. A
pplication K

it Inheritance H
ierarchy

40

Debugging using GDB - the GNU Source Level Debugger

To debug a program with GDB, type “gdb programname” to a shell. GDB commands
include:

run arguments...
Start the program with the specified command line arguments.

break linenumber
break function
break method
break filename:function
break filename:linenumber

Place a breakpoint at the specified location. You can also specify an if clause with
any of the above:

break function if expression (See expression, bottom of next page)

tbreak args
Place a one-time breakpoint. Takes same type of arguments as break.

info breakpoints
List all breakpoints, with their status and breakpoint numbers.

disable pbnums...
enable pbnums...
delete bpnums...

Temporarily disable/enable/delete breakpoints. Specify breakpoint numbers.

commands bpnum
Specify commands to be executed when breakpoint bpnum is reached.

list args
Lists source lines. Arguments are same as those for the break command.

step count
Run count lines of source. Number of lines defaults to one.

next count
Similar to step, but do not step into functions.

finish
Run until the current function/method returns.

backtrace
Show stack frames; useful in discovering where you are after a crash.

41

frame framenumber
Start examining the frame with the specified frame number.

print expression
Print the value of the expression (See expression, below)

set variable = expression
Assign value of expression to variable (See expression, below).

info classes regexp
info selectors regexp
info types regexp

Show info about the classes/selectors/types whose names match the regular
expression regexp.

pclass classname
Show the methods defined for the specified class.

ptype typename
Show the type definition of the specified type.

whatis expression
Show the type of the specified expression. The expression is not evaluated.

expression
Any valid C or Objective-C expression, evaluated within the current stack frame.
Expressions can contain the symbols $ (referring to the last value printed), $$ (the
value before the last), $n (the nth value from value history), or $var (a convenience
variable, created on the fly if necessary). Use info history to see the value history.

help command
GDB has plenty of help. Use this command to find out more about the above (and
other) GDB commands.

42

Glossary

abstract superclass:
In Objective-C, a class that’s defined solely so that other classes can inherit from it.
Programs don’t use instances of an abstract class, only of its subclasses.

action message:
In the Application Kit, a message sent by a Control object (such as a Button or a Slider).
The message translates the user’s action in the Control into a specific instruction for the
application. See also target.

active application:
The application currently associated with keyboard events. Menus are visible on-screen
only for the active application, and only the active application can have the current key
window and main window.

ancestor:
In the Application Kit, a View is said to be the ancestor of all the Views below it in the
view hierarchy, including its subviews. See also descendant.

Application Kit:
The Objective-C classes and C functions available for implementing the NeXT window-
based user interface in an application.

class:
In Objective-C, a particular kind of object. Objects that have access to the same methods
and have the same types of instance variables belong to the same class. A class definition
declares the instance variables and defines the methods for all members of the class.

class method:
In Objective-C, a method that can be used by the class object rather than by instances of
the class..

class object:
In Objective-C, an object that knows how to create new objects (instances) of a class.
Class objects are created by the compiler and have the same name as the class; they’re the
complied version of the class.

delegate:
In the Application Kit, an object that acts on behalf of another object. Window,
Application, Text, Listener, and Speaker objects can be assigned delegates.

descendant:
In the Application Kit, a View is said to be the descendant of all the Views above it in the
view hierarchy, including its superview. See also ancestor.

43

dispatch table:
In Objective-C, a table used to implement run-time messaging. Each object class has a
dispatch table that associates method selectors with the addresses of the method in
memory.

dynamic binding:
Binding an object data structure with the method the object is to perform at run time,
rather than at compile time.

event:
A keyboard or mouse action or other occurrence that the application may want to respond
to.

event dispatcher:
The part of the Window Server that accepts user input such as keyboard and mouse
actions and decides which window to assign it to.

event message:
In the Application Kit, a message to perform a method named after an event or subevent.
Event messages are used to dispatch events to the objects that will respond to them. See
also action message.

factory:
Same as factory object or class object.

factory method:
Same as class method.

factory object:
Same as class object.

first responder:
In the Application Kit, the object that will have the first chance to respond to keyboard
event messages, mouse-moved event messages, and action messages with user-selected
targets. Each Window has its own first responder, which it changes in response to
mouse-down events.

foundation class:
Any class defined by Objective-C and provided with the compiler. These classes are at
the top of the inheritance hierarchy and provide a foundation for the classes defined in
programs and the software kits.

id:
In Objective-C, an object type defined as a pointer to the object data structure.

44

inheritance:
In object-oriented programming, the ability of a superclass to pass its characteristics
(methods and instance variables) on to its subclasses. In Mach, the transfer of address
space access rights from a parent process to a child process.

inheritance hierarchy:
In object-oriented programming, the hierarchy of classes that’s defined by the
arrangement of superclasses and subclasses. Every class (except Object, which is at the
root of the hierarchy) has a superclass, and any class may have an unlimited number of
subclasses. Through its superclass, each class inherits from those above it in the
hierarchy.

instance:
In Objective-C, any object that’s not a class object is said to be an instance of its class.

instance method:
In Objective-C, any method that can be used by an instance of a class rather than by the
class object.

instance variable:
In Objective-C, a variable that’s part of an object’s private data structure. Instance
variables are declared in a class definition and become part of all the objects that are
instances of the class.

Interface Builder:
A tool that lets you graphically specify your program’s user interface. It sets up the
corresponding objects for you and makes it easy for you to establish connections between
these objects and your own code where needed.

key equivalent:
In the Application Kit, the character that can be used as the keyboard alternative for a
given object.

makefile:
A specification file used by the program make to build an executable version of your
application. A makefile details the files and dependencies on which your application is
built.

message:
In object-oriented programming, a message is the method selector (name) and arguments
that are sent to an object; it tells the receiving object what to do. In Mach, a message
consists of a header and a variable-length body; operating system services are invoked by
passing a message from a thread to the port representing the task that provides the desired
service.

method:
In object-oriented programming, a procedure that can be executed by an object.

45

Music Kit:
The Objective-C classes and C functions available for music composition, manipulation,
synthesis, and peformance.

next responder:
In the Application Kit, the object that will be sent event and action messages that the
intended receiver can’t handle. See also responder chain.

NextStep:
NeXT’s application development and user environment, consisting of the Workspace
Manager, Interface Builder, Application Kit, and Window Server.

nil:
In Objective-C, an object id with a value of 0.

object:
A programming unit that groups together a data structure (instance variables) and the
operations (methods) that can use or affect that data; the central focus of object-oriented
programming.

polymorphism:
In object-oriented programming, the ability of different objects to respond each in their
own way to the same message..

receiver:
In object-oriented programming, the object that receives a message.

responder chain:
In the Application Kit, a linked list of Responder objects that’s formed by initializing
each object’s next responder with the id of another object.

selector:
In Objective-C, the name of a method when it’s used in a source-code message to an
object, or the integer that replaces the name when the source code is compiled.

Sound Kit:
The Objective-C classes and C functions available for creating sound effects, doing
speech analysis, and performing other sound manipulation.

subclass:
For any given class of objects, any class that’s one step below it in the inheritance
hierarchy.

superclass:
For any given class of objects, the class that’s one step above it in the inheritance
hierarchy.

supermenu:
A menu containing a command that controls another menu, its submenu.

46

target:
In the NeXT user interface, what the user selects to be acted on by a menu command or a
control within a panel—for example, text that’s deleted by the Cut command. In the
Application Kit, the object that’s receives action messages from a Control.

Window Server:
A process that dispatches user events to windows and enables applications to perform
drawing operations with the PostScript language.

47

